
Designation: G135 − 95 (Reapproved 2019)

Standard Guide for
Computerized Exchange of Corrosion Data for Metals1

This standard is issued under the fixed designation G135; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers the techniques used to encode corro-
sion of metals test results for exchange between computer
systems.

1.2 Guidelines are given for creating a data exchange
appendix for each ASTM corrosion of metals standard.

1.3 Instructions are given for creating data translation soft-
ware from the contents of the data exchange appendix.

1.4 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

G106 Practice for Verification of Algorithm and Equipment
for Electrochemical Impedance Measurements

G107 Guide for Formats for Collection and Compilation of
Corrosion Data for Metals for Computerized Database
Input

2.2 ANSI Standards:3

ANSI/ISO 9899 1990 [1992] Programming Language C
ANSI X3.4-1986 Coded Character Set 7 Bit ASCII

3. Terminology

3.1 Definitions:
3.1.1 datatype—a group of rules specifying the format of an

object.

3.1.2 global data—information shared among several stan-
dards.

3.1.3 local data—information specific to a certain standard.

3.1.4 semantics—information meaning.

3.1.5 syntax—information format.

3.1.6 tagged object—a named block of information.

3.1.7 translator—a computer routine which writes or reads
data files.

4. Significance and Use

4.1 This guide establishes a formalism for transferring
corrosion test data between computer systems in different
laboratories. It will be used by standards developers to specify
the format of files containing test results.

4.2 This guide defines a generic approach to structuring data
files. It will be used by software developers to create programs
which read and write these files.

4.3 Each standard test procedure will define a unique data
file derived from this guide. Each time a standard test is
performed, the results can be summarized in a data file specific
to that test.

4.4 Some experimental information will be global, that is,
common to several standards, and will be contained in Guide
G107 and other global data dictionaries. Other information will
be local, that is, unique to a given standard, and will be defined
in that standard.

5. Guide for Standards Authors

5.1 Local and Global Data:
5.1.1 Some information may be used across several corro-

sion standards, that is, global. Global data is defined in Guide
G107 and other global standards.

5.1.2 Some information may be local to a particular corro-
sion standard. Local data is defined in the standard’s data
exchange appendix.

5.2 Data File:
5.2.1 Each test will generate a single test data file. File name

formats are not specified.
5.2.2 The data file is arranged as a set of named or tagged

objects. Each time a standard test is performed a set of objects

1 This guide is under the jurisdiction of ASTM Committee G01 on Corrosion of
Metals and is the direct responsibility of Subcommittee G01.05 on Laboratory
Corrosion Tests.

Current edition approved Feb. 15, 2019. Published February 2019. Originally
approved in 1995. Last previous edition approved in 2013 as G135 – 95 (2013).
DOI: 10.1520/G0135-95R19.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

3 Available from American National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036, http://www.ansi.org.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the
Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

1

is obtained. The data file can be thought of as a permanent
repository for this set of objects.

5.2.3 Each tagged object will take two or more lines in the
data file. Lines are strings of ASCII (ANSI X3.4-1986)
characters terminated with a carriage return/linefeed character
pair or a single linefeed character.

5.2.4 Lines are further subdivided into tab delimited ASCII
fields that are particularly suitable for manipulation by spread-
sheet and scientific charting programs. For example, Fig. 1
shows how a section of a data file would show up on printed
output.

5.3 Tagged Object:
5.3.1 A tagged object is a repository for an individual block

of information. It may be a simple piece of data, the test date
for example, or it may be complex, such as a current/voltage/
time curve. A tagged object contains three subordinate areas:
(1) the tag, (2) the datatype, and (3) the actual data. The tag and
datatype are the first two fields of the first line while the actual
data is contained in subsequent lines. Data lines are always
indented one tab space. This is illustrated in Fig. 2.

5.3.2 Tag:
5.3.2.1 The object’s tag is a simple string that uniquely

identifies it among other objects in a tagged object set.
5.3.2.2 When implementing a translator for a given

standard, the implementation is free to define other tagged
object names so long as they don’t clash with those defined in
the standard. It is suggested that additional names be prefixed
with some unlikely and unique combination of alphanumeric
characters so that name conflicts do not arise in future versions
of the standard. For example; NewTest_Apex Potential.

5.3.2.3 Tags are made up of one or more character strings
separated by periods. The first character in each string must be
alphabetic (including the underscore). Subsequent characters
may be alphanumeric.

5.3.2.4 Periods should only be used to associate different
objects together. For example, Matl.Class, Matl.SubClass,
Matl.TradeName, are all aspects of Material. In future speci-
fications it is suggested that this be done using complex,
multifield datatypes.

5.3.2.5 Periods should not be used to separate multiple word
individual concepts. Instead use capitalization or underscore.
For example; ControlMode or Control_Mode.

5.3.2.6 Tags are case insensitive although mixed case is
suggested for readability.

5.3.3 Datatype:

5.3.3.1 Each object has a datatype which specifies the
format of the object’s data.

5.3.3.2 Global datatypes are defined in a global data ex-
change standard such as Guide G107 and are repeated here for
reference, as follows:

(a) String (STRING)—Strings contain purely character in-
formation. Strings may be further encoded depending on the
semantic description of the object.

(b) Quantity (QUANT)—Quantities represent numeric val-
ues along with their units. Units may be further encoded
depending on the semantic description of the object.

(c) Date (DATE)—Dates are simple day specifiers.
(d) Time (TIME)—Times are simple time of day specifiers.
(e) Category Set (SET)—Category sets are used to repre-

sent choices. The actual meaning of each value is given in the
semantic description of the object.

(f) Tabular (TABLE)—Tables are used to hold arrays of
records. The datatype, units, and name of each column is also
encoded.

5.3.3.3 A particular implementation of a test is free to define
local datatypes as long as they don’t clash with those defined
in global standards. These local datatypes are defined in the
standard’s data exchange appendix.

5.3.3.4 The datatype has a unique identifier made up of a
standard number and a name separated by a period; for
example, G107.SET. Each time an object is recorded in the
data file, the datatype identifier is recorded with the object.
That identifier specifies to the translator (either computer or
human) what data format to use in reading the data from or
writing the data to the file.

5.3.3.5 In cases where the reading translator is unable to
find a datatype in its internal table, that object will be marked
as untranslated. The translator is free to take the appropriate
action depending on the importance of the object.

5.3.3.6 It is important to note that the datatype doesn’t
completely specify the meaning of the data, only its format. For
example, a value of one for the tag “Surface.Condition” has a
very different meaning than the value of one for the tag

FIG. 1 Data File Sample

FIG. 2 The Elements of a Tagged Object

G135 − 95 (2019)

2

“Potentiostat.ControlMode” even though they are both of type
G107.SET. Those meanings are construed from the tag.

5.3.4 Data:
5.3.4.1 The object’s data is arranged in a format defined by

the datatype. Data starts in the second line of the data object.
There may be multiple lines and multiple fields associated with
a data object. Each data line is indented by one tab space to
distinguish it from the tag/datatype lines.

5.4 Data Exchange Appendix:
5.4.1 Standard tests that use this guide will contain a data

exchange appendix. This appendix contains the data and
format information required to define test data files. For an
example see Appendix X1.

5.4.1.1 The data exchange appendix should have three parts,
the local datatype definitions section, the object definition
table, and a sample data file.

5.4.2 The local datatype definitions section gives a descrip-
tion of and formal syntax for each local datatype. This gives the
rules of translation to programmers who are creating translators
for the standard.

5.4.2.1 The rules should be written using the formal lan-
guage described in Section 7. The translation rules for several
data types are given in Section 6. The QUANT type is
reproduced in Fig. 3 as an example:

5.4.3 The object definition table is a tabular listing of all the
objects in the file. For example, consider Table 1. There are
four objects in this table: Standard, Date, ControlMode, and
Spectrum. In an actual standard there may be many more.

5.4.3.1 Each row of the table defines a data object. These
objects may be copied from global standards such as Guide
G107 or may be locally defined. An object definition should
not refer to another standard test since a revision of that test
may change the object definition without warning.

5.4.3.2 Column Definitions (as illustrated in Table 1):

NOTE 1—Columns 1, 2, and 3 are required for global objects. Columns
1 to 6 are required for local objects.

(a) Reference Number (Column 1)—The reference number is a unique
number referring back to the standard and paragraph where the data object
is defined. This number is made up of a Standard ID and a paragraph
number separated by a period (.).

(b) Tag/Column Tag (Column 2)—This column contains the data tag. If
the data object is tabular, this column will also contain sub-tags or
headings for each column of the object.

(c) Required (Column 3)—This column indicates whether a particular
object is required or can be safely omitted from the data file.

(d) Description (Column 4)—The description column contains free
form text describing the object. Constraints, defaults, or other specifica-
tions may show up here.

(e) Datatype (Column 5)—The type gives the datatype of the object.
The data types may be global types defined in Guide G107, or they may
be local to the standard being written.

(f) Category Set/Units/Column Information (Column 6)—This column
varies depending on the datatype. If the type is a SET, Column 6 contains
the allowed values and meanings. If the type is a QUANT, Column 6
contains suggested units. If the type is a TABLE, Column 6 contains units
or allowed values as required by the datatype of each column.

5.4.4 The last required section of the data exchange appen-
dix is a sample data file. This should show a file as actually
printed although data may be omitted for the sake of space.

6. Guide for File Translator Programmers

6.1 The following section is intended for programmers who
are writing data exchange translators. A translator is a portion
of a program which reads or writes a data file. Production rules
are shown in bold-face Courier font.

6.1.1 Character Set—The data is stored in an ASCII text file
which can be directly printed using most printers and manipu-
lated using most text editors (see Fig. 4).

6.1.2 File—The data file is arranged as a sequence of tagged
objects.

File : = TaggedObject [1 . .*]

6.1.3 Tagged Object—A tagged object starts with its tag line
and includes all the information up to the next tag. Any other
lines associated with the object must be indented one tab
character. Each line is terminated with a line feed or carriage
return/line feed pair.

TaggedObject : = TagLine DataBlock

6.1.3.1 Tag Line—The first line of a tagged object is called
the Tag Line. It contains the tag or name of the object and the
format specifier.

TagLine : = TagField FormatField {CommentField} NewLine

6.1.3.2 Tag—A tag must start with an alphabetic character or
underscore (___). Thereafter numeric characters can be used
as well as alphabetic and underscore. Tags may not contain
spaces. The only other punctuation allowed is a period (.)

FIG. 3 Translation Rules for the Quant Data Object

G135 − 95 (2019)

3

